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ABSTRACT
Fluorescence time-lapse microscopy is a powerful technique
for observing the spatial-temporal behavior of viruses. To
quantitatively analyze the exhibited dynamical relationships,
tracking of viruses over time is required. We have developed
probabilistic approaches based on particle filters for tracking
multiple virus particles in time-lapse fluorescence microscopy
images. We employ a mixture of particle filters as well as
independent particle filters. For the latter, we have devel-
oped a penalization strategy to maintain the identity of the
tracked objects in cases where objects are in close proxim-
ity. We have also extended the approaches for tracking in
multi-channel microscopy image sequences. The approaches
have been evaluated based on synthetic images and the perfor-
mance has been quantified. We have also successfully applied
the approaches to real microscopy images of HIV-1 parti-
cles and have compared the tracking results with ground truth
from manual tracking.

Index Terms— Biomedical imaging, microscopy image
sequences, tracking virus particles.

1. INTRODUCTION

The aim of our work is to study the dynamic behavior of the
human immunodeficiency virus (HIV) based on live cell mi-
croscopy using fluorescently labeled virus particles. Tracking
single virus particles yields quantitative information that con-
tributes to the understanding of viral processes (e.g., cell en-
try). To obtain statistically sound conclusions, many individ-
ual particles must be tracked. Automatic tracking techniques
are required to analyze a large number of image sequences.
However, tracking virus particles is challenging. Problems
are due to the small size of viruses as well as their complex
motion behavior. In addition, one has to cope with the large
number of virus particles, the relatively high level of cellular
autofluorescence, as well as a relatively low signal-to-noise
ratio (SNR).
In previous work on virus tracking, a deterministic two-

step paradigm encompassing virus localization and motion

correspondence has been typically employed. For virus local-
ization, most approaches employ a maximum intensity search
strategy, where intensity maxima are associated with candi-
date virus particles (e.g., [1]). Model fitting may be employed
to enhance the localization accuracy (e.g., [2]). For motion
correspondence, approaches that consider the motion of all
viruses via graph-theoretical algorithms have been used (e.g.,
[3]). In contrast to the deterministic schemes, probabilistic
approaches are generally characterized by the inclusion of a
spatial-temporal filter. An approach using a pool of Kalman
filters has been presented in [4]. However, the steps of object
localization and spatial-temporal filtering are uncoupled. This
entails that temporal information is not used for object lo-
calization, and analogously image information is not directly
used by the filter to estimate the position of an object. In con-
trast to the Kalman filter, the particle filter, which has been in-
troduced to the field of computer vision in [5], exploits more
effectively the image and temporal information encoded in an
image sequence. An approach using a mixture of particle fil-
ters for virus tracking has been described in [6]. There, how-
ever, only a fixed number of objects could be tracked. Gener-
ally, in real applications, the number of objects changes over
time (e.g., objects enter the field of view or visible objects dis-
appear). For use of a mixture of particle filters in a different
application, namely tracking of microtubules, we refer to [7].

In this contribution, we describe probabilistic approaches
based on particle filters for tracking multiple viruses in fluo-
rescence microscopy time-lapse images. Whereas in our ear-
lier work we used a mixture of particle filters (MPF) [6], we
here introduce an approach using independent particle filters
(IPF). In contrast to the approach usingMPF, the approach us-
ing IPF can track a variable and unknown number of objects.
A problem with standard IPF is that the independent filters
may attach to the same object. We address this problem via
a novel penalization mechanism based on a deterministic mo-
tion correspondence algorithm. The investigated approaches
are fully automatic and have been successfully applied to a
large number of synthetic image sequences displaying virus-
like objects as well as to relatively long real microscopy im-
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age sequences (e.g., more than 200 frames) displaying HIV-1
particles.

2. TRACKING OF MULTIPLE VIRUS PARTICLES

In our approaches, tracking is formulated as a Bayesian se-
quential estimation problem. Within a one-body state space,
it is assumed that a virus particle is represented by a state vec-
tor xt and that a noisy measurement yt reflects the true state
of xt. At time step t, the aim is to estimate the state xt of a
virus given a sequence of measurements y1:t. By modeling
the temporal evolution using a dynamical model p(xt|xt−1)
and incorporating measurements derived from the images via
a measurement model p(yt|xt), a Bayesian filter estimates
the posterior distribution p(xt|y1:t) via stochastic propaga-
tion and Bayes’ theorem:

p(xt|y1:t) ∝ p(yt|xt)

∫
p(xt|xt−1) p(xt−1|y1:t−1) dxt−1.

An estimate of xt can be obtained from the posterior p(xt|y1:t),
which, in our case, is estimated using a particle filter. The
idea of this algorithm is to approximate the posterior via a
set {xi

t;w
i
t}

Ns

i=1
of Ns random samples x

i
t (the ‘particles’)

that are associated with importance weights wi
t. Below, we

briefly describe the tracking approach based on a mixture of
particle filters (MPF) and then we present our approach based
on independent particle filters (IPF).

2.1. Mixture of Particle Filters (MPF)

In the case of tracking multiple objects that have a similar ap-
pearance, multiple modes arise in the posterior distribution,
where each mode corresponds to one object. Although a stan-
dard particle filter is in principle able to handle such a distri-
bution, it is well-known that this filter cannot maintain the
multimodality over several time steps [5],[8]. To address this
problem, one may model the posterior p(xt|y1:t) as a non-
parametricM-component mixture model:

p(xt|y1:t) =

M∑
m=1

πm,t pm(xt|y1:t),

where πm,t denotes the component weight of the m-th com-
ponent [8]. Each m-th component is now approximated us-
ing a set of particles {xi

t;w
i
t}i∈τm

, where τm is the set of in-
dices indicating which particles belong to componentm, and
particles are allocated to each component using a clustering
mechanism. Note that

∑M

m=1
|τm| = Ns, where | · | denotes

the set size operator; note also that |τm| may vary for each
component. If tracking a variable and unknown number of
objects, the performance of this approach deteriorates as the
number of objects increases, since the number of particlesNs

that approximates the mixture model remains constant, i.e.,
fewer particles are allocated to each m-th component, thereby
attaining a lower estimation accuracy.

2.2. Independent Particle Filters (IPF)

Alternatively, one may track multiple objects by instantiating
one independent particle filter per object. In this case, each
filter uses an independent set of particles of size Ns. In con-
trast to the mixture approach, the estimation accuracy does
not deteriorate as the number of objects increases, since each
filter uses an independent set of particles of size Ns. Failures
arise when objects are in close proximity, since the filters con-
verge towards the object with the best likelihood p(yt|xt).
Approaches to address this problem have been proposed by
[9],[10]. In [9], an exclusion mechanism based on a magnetic
potential model has been proposed for tracking human faces.
In [10], the mean-shift algorithm has been used for determin-
istically biasing the particles; this approach has been applied
for tracking hockey players. The former approach prevents
objects from merging, which is not desirable in our applica-
tion, while the latter approach might yield an incorrect offset
due to the close proximity of multiple objects with a similar
appearance.
In contrast to [9],[10], we propose a novel penalization

strategy that is based on both probabilistic and deterministic
information, and which does not necessarily preclude objects
from merging. Our approach comprises three steps: first, the
approach determines objects that are in close proximity. This
reduces to finding cliques in an undirected graph Γ = (V,E),
where a vertex vi is defined by the filtered position estimate
of object i, and an edge e = {vi, vj} is said to join vertices
vi and vj if the Euclidean distance between the positions of
the two objects is below a predefined value. The second step
determines the most plausible position x̂t for each object in
each clique. For this purpose, modes are sought in the proba-
bility density function that is induced by merging all particles
of all filters of one clique: given k objects, such a distribu-
tion exhibits k modes. In some cases, k modes might not be
obtainable, for instance, if objects are too close to one an-
other. The assignment of modes to objects is carried out via
a deterministic motion correspondence algorithm, namely a
global nearest neighbor approach [1]. If no mode (i.e., no
most plausible position) is assigned to an object, this object
is not further considered in the penalization scheme. This en-
tails that the penalization scheme may allow filters to coalesce
for a while. In the third step, the weights of those misleading
particles that are relatively distant to the most plausible posi-
tion x̂t of an object are assigned lower values via a Gaussian
function centered at x̂t with a standard deviation σpenalize.
Given the lower weights, the resampling step of the particle
filter may discard the misleading particles, thereby preventing
filters from coalescing.

2.3. Model of Virus Particles

We model the intensity distribution of each virus particle by a
2D Gaussian function, which is parametrized by the position
of the virus, the peak intensity, and the standard deviation;
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these parameters constitute the state x. For the dynamical
model p(xt|xt−1), we assume that the components of x fol-
low independent Gaussian random walk dynamics. The mea-
surement model p(yt|xt) measures the probability that the
predicted state xt generated a Gaussian intensity distribution
in the image. In our application, the microscopy image se-
quences comprise two channels (‘red’ and ‘green’ channel).
To analyze two-channel image sequences we suggest the fol-
lowing extension of the measurement model:

p2−channel(y|x) ∝ exp

(
−

D(yr,g(x))2 + D(yg,g(x))2

2σ2
n

)
,

where yr and yg are the image intensities in the red and green
channels, respectively, g(x) is a synthetic image generated
using the 2D Gaussian appearance model, and D(·) is a dis-
tance function (e.g., Euclidean distance); the parameter σn

regulates the expected degree of noise.

3. EXPERIMENTAL RESULTS

We have applied our approaches to synthetic as well as real
microscopy image sequences. To automatically detect virus
particles, we employ either the spot-enhancing filter (SEF)
[11] or 2D Gaussian fitting (GaussFit) and combine them with
the particle filter approaches. The approaches using a mixture
of particle filters (MPF) can only track objects that are visi-
ble at time step t = 0, while those using independent parti-
cle filters (IPF) can track objects that enter the field of view
at any time step. For motion correspondence between the de-
tected particles and the independent filters we employ a global
nearest neighbor approach. To measure the performance, we
use the tracking accuracy defined as Ptrack =

ntrack,correct

ntrack,total
,

which reflects the ratio between the number of correctly com-
puted trajectories ntrack,correct and the number of true tra-
jectories ntrack,total. The value for ntrack,correct is com-
puted as the weighted sum of the percentage of tracked time
steps rtracked,i for each i-th true trajectory: ntrack,correct =∑ntrack,total

i=1
wirtracked,i, where the weight wi is given by a

Gaussian function, which takes as its argument the number
of correctly computed trajectories ntrack,i. The weighting
scheme is introduced to penalize computed trajectories that
are broken. Note that Ptrack ∈ [0, 1].
We first validated the approaches based on a large number

of synthetic image sequences. Here, we describe the exper-
imental results obtained for one illustrative image sequence.
This sequence consists of 100 images (256×256 pixels, 16-
bit) displaying 20 synthetic Gaussian-like particles, which
enter or leave the field of view at certain time steps. The
SNR level is 4.55 and the noise model is assumed to be Pois-
son distributed. The quantitative experimental results are as
follows: SEF&MPF achieves 79.28%, GaussFit&MPF at-
tains 80.00%, SEF&IPF yields 85.65%, and GaussFit&IPF
achieves 90.13%. Thus the IPF approaches yield superior
results.

Table 1: Description of real microscopy image sequences.

Dimensions No. of time steps No. of objects
Seq. 1 256×256 250 23
Seq. 2 512×512 200 15
Seq. 3 512×512 400 43
Seq. 4 256×256 150 21
Seq. 5 512×512 400 24

Table 2: Tracking performance Ptrack [%] for real mi-
croscopy image sequences.

SEF& GaussFit& SEF& GaussFit&
MPF MPF IPF IPF

Seq. 1 84.82 81.95 86.73 82.61
Seq. 2 84.64 85.64 93.54 93.54
Seq. 3 50.62 49.04 74.64 67.76
Seq. 4 28.52 23.81 71.10 83.39
Seq. 5 48.51 52.61 73.55 76.89

We also validated the algorithms using real microscopy
image sequences. In these sequences, fluorescently labeled
HIV-1 particles were imaged using a fluorescence wide-field
microscope. Fluorophores were excited with their respective
excitation wavelengths and movies were recorded with a fre-
quency of 10Hz [12]. Ground truth for the virus positions
was obtained by manual tracking using the commercial soft-
ware MetaMorph. The quantitative experimental results for
five sequences are presented in Table 2. Each sequence con-
sists of 150 up to 400 frames (see Table 1). Analogously to
the experiments using synthetic data, it turns out that the ap-
proaches using IPF yield a higher tracking accuracy than the
approaches using MPF.
Sample images of tracking results for a section of the real

sequence “Seq. 4” are shown in Fig. 1. Besides the results
for the MPF and IPF, we also show the results obtained with
IPF without employing a strategy to prevent filter coalescence
(standard IPF). In this case, it can be seen that the filters attach
to the objects with the best likelihoods, resulting in a fewer
number of tracked objects. In contrast, our extended IPF ap-
proach, via the proposed penalization scheme, maintains the
identities of the virus particles, in particular, of those that are
in close proximity (e.g., virus particles ‘2’ and ‘4’ as well as
‘7’ and ‘8’ shown in the results for IPF).
We have also applied our approaches to both channels of

real microscopy image sequences, where the first channel cor-
responds to the red fluorescent protein (RFP) signal while the
second channel corresponds to the green fluorescent protein
(GFP) signal. Generally, virus particles are visible in both
channels. In some cases, however, a particle disappears from
one channel, while remaining visible in the other channel. In
Fig. 2, we show the tracking results for an ROI (76×87 pixels)
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MPF, t = 74 Standard IPF, t = 74 IPF, t = 74

Figure 1: Tracking results for a section of the real image se-
quence “Seq. 4” for time step t = 74: mixture of particle fil-
ters (MPF) (left), standard independent particle filters (Stan-
dard IPF) (center) and independent particle filters in combi-
nation with our penalization strategy (IPF) (right).

IPF, t = 0 (RFP) IPF, t = 50 (RFP) IPF, t = 100 (RFP)

Figure 2: Tracking results for the real two-channel image se-
quence “Seq. 2”. The results for GaussFit&IPF using both
channels are overlaid on the images from the RFP channel;
only the trajectory for the considered object is displayed.

from “Seq. 2” as an illustrative example. The results demon-
strate that by employing the information from both channels,
our approach (in this case GaussFit&IPF) can retrieve the en-
tire trajectory of the virus particle in the middle of the de-
picted section, which disappears at time step t = 68 from the
RFP channel.

4. DISCUSSION

We have presented probabilistic approaches based on particle
filters for tracking multiple viruses in microscopy image se-
quences. In particular, we have introduced an approach using
independent particle filters in conjunction with a penalization
scheme to maintain the identity of objects in close proxim-
ity. Our quantitative experimental results based on synthetic
and relatively long real microscopy image sequences show
that the new approach is superior to a previously developed
approach based on a mixture of particle filters. In addition,
we described an extension of our approaches for analyzing
two-channel image sequences. This allows studying events of
biological interest, e.g., the colocalization of proteins.
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